
A guide to the ANU p-Quotient Program
Version 1.9

Eamonn O’Brien

January 2012

Contents

Abstract 2

1 Program content 2

2 Installing pq 3

3 Organisation 3

4 Runtime parameters 5

5 Conventions 6
5.1 Menu Conventions . 6
5.2 Word input . 6

5.2.1 The default format for word input 6
5.2.2 The basic format for word input 7
5.2.3 Advanced menu word input . 7

5.3 Input and output facilities . 8

6 The p-Quotient implementation 8
6.1 Basic Menu for p-Quotient Program . 8
6.2 Advanced p-Quotient Menu . 10

7 The p-Group Generation implementation 11
7.1 Required input . 11
7.2 The automorphism group description 11
7.3 Saving group descriptions . 11
7.4 The (Main) Menu for p-Group Generation 11
7.5 Construct descendants option . 12
7.6 Advanced Menu for p-Group Generation 15
7.7 Strategies to minimise time and space 16

8 The Standard Presentation and
Automorphism Group implementation 16

9 Warning 18

1

A Examples 19
A.1 A Basic Menu example . 19
A.2 A p-Group Generation example . 20
A.3 A Standard Presentation Menu example 23
A.4 A keywords example . 25
A.5 A basic format Advanced p-Group Generation example 27

B Changes 32

References 33

2

Abstract

The ANU p-Quotient Program (pq) provides access to implementations of
an algorithm to construct a power-commutator presentation (pcp) for a p-group
and of an algorithm to generate descriptions of p-groups. It also allows access to
an implementation of an algorithm which can be used to construct a “canonical”
pcp for a p-group and via this construction it allows a user to determine whether
two p-groups are isomorphic. The latter can be used to generate a description of
its automorphism group.

1 Program content

The ANU p-Quotient Program (pq) is named for the p-quotient algorithm that it first
implemented. Now, via menus it provides access to implementations of all the following
algorithms:

1. A p-quotient algorithm to compute a power-commutator presentation for a p-
group. The algorithm implemented here is based on that described in Newman
and O’Brien (1996), Havas and Newman (1980), and papers referred to there.

Another description of the algorithm appears in Vaughan-Lee (1990b). A FOR-
TRAN implementation of this algorithm was programmed by Alford & Havas.
The basic data structures of that implementation are retained.

The current implementation incorporates the following features:

a. collection from the left (see Vaughan-Lee, 1990b); Vaughan-Lee’s implemen-
tation of this collection algorithm is used in the program;

b. an improved consistency algorithm (see Vaughan-Lee, 1982);

c. new exponent law enforcement and power routines;

d. closing of relations under the action of automorphisms;

e. some formula evaluation.

2. A p-group generation algorithm to generate descriptions of p-groups. The algo-
rithm implemented here is based on the algorithms described in Newman (1977)
and O’Brien (1990). A FORTRAN implementation of this algorithm was earlier
developed by Newman & O’Brien.

3. A standard presentation algorithm used to compute a canonical power-commutator
presentation of a p-group. The algorithm implemented here is described in
O’Brien (1994).

4. An algorithm which can be used to compute the automorphism group of a p-
group. The algorithm implemented here is described in O’Brien (1995).

The anu-pq program is written in traditional C and contains about 22000 lines of
code. It was developed in a SUN OS environment and has been ported successfully
to each of Solaris, AIX and Ultrix environments. The interface and input/output
facilities of the program are rudimentary. Interfaces have been developed which allow
parts of this program to be called from within the computational group theory system

3

GAP. This program is supplied as a package within GAP. The link from GAP to pq is
described in the manual for GAP 3.4 or in the manual found in the doc directory in the
case of the GAP 4 package ANUPQ; all of the necessary code can be found in the gap

directory of these distributions. The program is also distributed as part of Quotpic.
Version 1.9 of the anu-pq program (i.e. the version you are currently reading the

documentation for) is configured to call GAP, at least version 4.5, to compute stabilisers
when needed.

The FORTRAN version of this program was known as the Nilpotent Quotient
Program.

2 Installing pq

To install pq just follow the instructions for installing the ANUPQ package, i.e. in the
directory above, do:

./configure

make TARGET GAP=GAPPATH

If you are running Linux you may omit TARGET. The path GAPPATH should be
the path of a shell script that runs GAP 4 with packages AutPGrp (at least version 1.5)
and ANUPQ (at least version 3.1) installed. If the ANUPQ and/or AutPGrp packages
are not installed in the pkg directory of the GAP 4 distribution, then the -l option (last
line of the shell script previously mentioned) must be set to be a semicolon-separated
list of paths of the main GAP directory and the path of the pkg directory containing
those packages of ANUPQ and AutPGrp that are missing from the GAP 4 distribution
pkg directory.

The anu-pq program only needs GAP for computing stabilisers when you answer
“No” (0) to the question “PAG-generating sequence for automorphism group?”.
If you neglect to add: “GAP=GAPPATH ” to the make command, never mind; the anu-
pq program first checks to see if the environment variable ANUPQ_GAP_EXEC is set. For
csh doing:

setenv ANUPQ_GAP_EXEC GAPPATH

is essentially equivalent to including: GAP=GAPPATH in the make command. If you
use a different shell just use the appropriate syntax for setting environment variables
for your shell.

A good test for checking that you have installed pq correctly is to try the example
in Appendix A.2.

3 Organisation

Access to the implementations of each algorithm mentioned in Section 1 is provided
via menus. The p-quotient algorithm machinery is provided by the “Basic Menu for
p-Quotient Program” and the “Advanced p-Quotient Menu”; access to the p-group
generation algorithm implementation is provided via the main “Menu for p-Group

4

Generation” and the “Advanced Menu for p-Group Generation”; and finally the stan-
dard presentation algorithm and automorphism group algorithm implementations may
be accessed via the “Standard Presentation Menu”.

By default, the anu-pq program opens with the Basic Menu [for p-Quotient Pro-
gram] (see 6.1), which provides “basic” options for the p-Quotient algorithm and via
options 8 and 9 gives (immediate) access to two further menus, namely the Advanced
p-Quotient Menu (see 6.2) and the (main) Menu for p-Group Generation (see 7.4), re-
spectively. The main Menu for p-Group Generation provides access to a further menu:
the Advanced Menu for p-Group Generation (see 7.6).

If the anu-pq program is invoked with the -i switch (see Section 4), the program
opens with the Standard Presentation Menu (see Section 8) which gives one immediate
access to the standard presentation and automorphism group machinery and via option
7 access to the Basic Menu and hence the other menus.

To cleanly exit the anu-pq program one must retrace one’s path through the menus
(by typing the number of the option that exits each menu or 0). Exiting the menu that
the anu-pq program opened with (either the Basic Menu or the Standard Presentation
Menu), exits the anu-pq program.

The Basic Menu, the main Menu for p-Group Generation and the Standard Presen-
tation Menu are designed particularly for the new or occasional user; levels of control
by the user are low, but there is little attendant risk of obtaining inaccurate informa-
tion. The Advanced menus are designed for the knowledgeable user with specialised
needs; they allow the user to make almost all decisions, provide little protection and
if pre-requisite information for an option to succeed (e.g. a pc presentation for the
group) is not in place, the pq will invariably exit horribly.

Each menu is discussed in more detail later. See Section 5 for the conventions that
apply to these menus.

5

4 Runtime parameters

The program may be invoked with the following runtime parameters:

-b A “basic” format can be used to input a group presentation. See 5.2.2.

-G This option is used by GAP 4. It is essentially equivalent to setting the switches
-g -i -k simultaneously, except that it uses GAP’s iostream to direct requests
to GAP to compute stabilisers when necessary.

-g If groups are generated using p-group generation, then their presentations are
written to a file in a GAP compatible format. The name of the file may be selected
using the -w option; the default is GAP library.

-i This provides access to the Standard Presentation Menu, which can be used to
construct the standard presentation of a given p-group.

-k The presentation may be defined and supplied using certain key words. Examples
of this format can be found in those files in the examples directory whose names
commence with keywords . This option cannot be used with -b.

-s integer
All computations of power-commutator presentations occur in an integer array, y
– the space of this array, by default 1000000, is set to integer. See the discussion
on strategies to minimise time and space later in this document.

-v Gives the version of the ANU p-Quotient program and exits.

-w file
Group descriptions are written in GAP format to file. -g must be used in con-
junction with this parameter.

If the program is compiled using the RUN TIME option, then there are two additional
runtime options:

-c The maximum exponent-p class to be considered.

-d A bound on the number of defining generators.

6

5 Conventions

5.1 Menu Conventions

The following conventions apply for all menus.

• Typing the integer identifying an option selects that option.

• At a number of points in running the program, you will be asked questions or
prompted for input. A non-zero integer response signifies a positive response to
the question; a response of 0 (zero) is a negative response. In this guide, a “Yes”
means a non-zero integer response; a “No” is a zero response.

• For each menu, the option -1 lists the menu, and 0 exits the menu. To cleanly
exit the anu-pq program one must retrace one’s path through the menus (by
typing the number of the option that exits each menu or 0). Exiting the menu
that the anu-pq program opened with (either the Basic Menu or the Standard
Presentation Menu), exits the anu-pq program.

• If the program cannot open a file for any reason, it simply reports this and if not
running interactively exits.

• Input from the first occurrence of a “#” symbol to the end of that line is inter-
preted as a comment and is ignored.

Language used in the menus for the construction of the pcp follows that used in
Havas & Newman (1980) and Newman & O’Brien (1996); that in the p-group generation
menus follows O’Brien (1990); that in the standard presentation menu follows O’Brien
(1994).

5.2 Word input

The performance of the program is significantly enhanced if it can store the defining
relations in their unexpanded form. It is currently only possible to store a supplied rela-
tion in its unexpanded form if the relation is either a power OR a commutator, and the
components of the power or commutator are only defining generators or their inverses.
Hence, it is frequently appropriate for the user to introduce redundant generators into
the supplied presentation.

There are two formats available for supplying generators and relations: the “default
format” (see Section 5.2.1) and the “basic format” (see Section 5.2.2). Examples of
the usage of both formats can be found in the examples directory.

5.2.1 The default format for word input

Under the default format, a user is prompted for a list of generators, which must be
supplied as a set. The user is then prompted for a defining set of relations, again
supplied as a set.

Any combination of relations and relators may be supplied. Note, however, you
may NOT use relations of the form u = v = w. Relations are separated by commas,
∧ is used for powers and conjugation, [and] are used to indicate the beginning and
end of a commutator, and 1 is the identity of the group. The following are examples
of valid input for relations:

7

{x ∧ 5 = [x, y, y], z ∧ x = 1, z * y * x * z ∧ -1 = 1}

{a3 * [a2, a1], a4 ∧ a1 * a3 ∧ a2 * [a2, a1 ∧ -1, a4, a1 ∧ 7] = 1}

5.2.2 The basic format for word input

The basic format is selected at start-up via the -b switch (see Section 4). In the pcp,
the defining generators and the pcp generators are labeled as positive integers; in each
case they commence at 1. Inverses of generators are labelled by the corresponding
negative number.

The format for word input is the following:

Exp Gen1 Gen2 . . . ;

where “Exp” is the exponent; if Geni is a positive integer, it represents the correspond-
ing generator of the group; if it is a negative integer, it represents the inverse of that
generator. Word input is terminated by a “;”. Entries in the word can be separated
by any positive number of spaces.

Defining relations may only be supplied as relations – not as relators. Each side of
the relation is supplied as a word using the above format. Where the input is a power
of a left-normed commutator, the following simpler format may be used

Exp [Gen1 Gen2 . . .];

where [and] are used to indicate the beginning and end of the commutator. As for
the default format, entries in the commutator can be separated by an optional number
of spaces. The identity word is indicated by supplying a word with exponent 0 – “0;”
is sufficient.

Examples of acceptable input are the following:

• The input “5 2 1 -3 4;” represents the word (2× 1× 3−1 × 4)5.

• The input “3 [2 1 1 3];” represents the commutator power [2, 1, 1, 3]3.

Under the basic format, the program only accepts input of either type in a word; you
may not combine them. This may affect how you supply the defining relations for the
presentation.

5.2.3 Advanced menu word input

Words are supplied as input to options to the Advanced menus on a number of occa-
sions. Usually, these are words in the pcp generators of the group.

Under the default format, the n pcp generators of the group are, for convenience,
automatically labelled as x1, x2, . . . , xn. All words in the pcp generators are then
supplied as words in x1, . . . , xn, using the format prescribed above for the defining
relators. Word input is terminated by a “;”.

A few options allow input involving the defining generators. The m defining gen-
erators of the group are also automatically labelled as x1, x2, . . . , xm. All words in
the defining generators are then supplied as words in x1, . . . , xm, using the format
prescribed above for the defining relators. As before, word input is terminated by a
“;”.

If you use the basic input format, then all words are supplied as specified in the
basic format discussion.

8

5.3 Input and output facilities

Currently, facilities exist to save the computed presentation to file and to later restore
and restart the computation. The files are saved and restored using the “fread” and
“fwrite” facilities, respectively. For both save and restore, the user supplies a name
for the file, which can be any valid (UNIX or VMS) name. In the case of writing to
file, the program does not query the user before overwriting an existing file – it is the
user’s responsibility to prevent such situations from occurring.

6 The p-Quotient implementation

6.1 Basic Menu for p-Quotient Program

The default opening menu obtained on running the program is listed below.

Basic Menu for p-Quotient Program

1. Compute pc presentation

2. Save presentation to file

3. Restore presentation from file

4. Display presentation of group

5. Set print level

6. Calculate next class

7. Compute p-covering group

8. Advanced p-quotient menu

9. (Main) menu for p-group generation

10. Exit from p-quotient program

We now discuss each of these options.

1. Compute pc presentation

When you select this option, you will be given the following sequence of prompts
for input. [If you start the anu-pq program with the -k switch (see Section 4),
you will not be prompted; instead you must supply input in the form:

keyword value

where value is the input you would otherwise have been prompted for. The last
input for this option must also be terminated by a semicolon (;). Some data have
default values if omitted, and there is no restriction on the order in which the
data are supplied. The keyword keyword needed and default value if there is one,
for the corresponding -k input is given in square brackets after describing each
prompt (but not after describing the prompts obtained when the pq program is
called with -b — the -k and -b switches cannot be used together). Actually, only
the first 3 letters of each keyword are significant; so, in fact, prime, for example,
may be abbreviated to pri.]

Input group identifier:

you may supply any sequence of characters, excluding spaces, as a valid
identifier for the group. [keyword: name, default: G.]

9

Input prime:

supply the prime p used in computing the p-quotient. [keyword: prime.]

Input maximum class:

supply the maximum exponent-p class of the quotient to be constructed.
[keyword: classbound, default: 10.]

Input print level:

see option 5 below. [keyword: outputlevel, default: 1.]

If the default format is used (i.e. pq was not called with the -b switch) then you
will be prompted as follows.

Input generating set (in { }):

supply generating set. [keyword: generators.]

Input defining set of relations (in { }):

supply defining set of relations. [keyword: relators, default: {}.]

Otherwise, if the basic format is used (i.e. pq was called with the -b switch; see
Section 4), you will not be prompted; instead you must supply input in the) then
you will be given the following prompts.

Input number of generators:

supply number of defining generators.

Input number of relations:

supply number of defining relations.

Then (i.e. with or without the -b switch) you will be prompted

Input exponent law (0 if none):

if the group is to satisfy a particular exponent law, supply a positive value
for that exponent. [keyword: exponentlaw, default: 0.]

In the basic format case, you will finally also be prompted to input each relation
for the group (if any).

2. Save presentation to file

prompts for file name, saves group presentation to file.

3. Restore presentation from file

prompts for file name, restores group presentation from that file if it exists.

4. Display presentation of group

displays group presentation; detail depends on print level; if level is one, then
display order of group, otherwise display full pcp.

5. Set print level

ranges from 0, providing no output, to 3; 1, the default, provides minimal output.

6. Calculate next class

calculates pcp for quotient having one class greater than the class of the existing
group.

7. Compute p-covering group

10

8. Advanced p-quotient menu

provides access to the “Advanced Menu” (intended for experts) for user manip-
ulation of the presentation.

9. (Main) menu for p-group generation

provides access to the main menu for p-group generation.

10. Exit from p-quotient program

causes the anu-pq program to exit, or if pq was called with the -i switch (see
Section 4) exits to the Standard Presentation Menu. Selecting option 0 performs
the same function.

6.2 Advanced p-Quotient Menu

The advanced p-quotient menu, given below, is selected by choosing option 8 from the
Basic Menu (see 6.1).

Advanced p-Quotient Menu

1. Do individual collection

2. Solve the equation ax = b for x

3. Calculate commutator

4. Display group presentation

5. Set print level

6. Set up tables for next class

7. Insert tails for some or all classes

8. Check consistency for some or all classes

9. Collect defining relations

10. Carry out exponent checks

11. Eliminate redundant generators

12. Revert to presentation for previous class

13. Set maximal occurrences for pcp generators

14. Set metabelian flag

15. Carry out an individual consistency calculation

16. Carry out compaction

17. Carry out echelonisation

18. Supply and/or extend automorphisms

19. Close relations under automorphism actions

20. Print structure of a range of pcp generators

21. Display automorphism actions on generators

23. Collect word in defining generators

24. Compute commutator of defining generators

25. Write presentation to file in GAP format

26. Write compact description of group to file

27. Evaluate certain formulae

28. Evaluate action specified on defining generators

29. Evaluate Engel (p - 1)-identity

30. Process contents of relation file

31. Exit to basic menu

11

7 The p-Group Generation implementation

7.1 Required input

The required input is the p-covering group of the starting group, together with a
description of the automorphism group of the p-covering group. Before you commence
to construct descendants, you should construct or restore its p-covering group, using
the appropriate options of the Basic Menu (see 6.1). It is the user’s responsibility to
do this – no check is performed.

7.2 The automorphism group description

You must also supply a description of its automorphism group, which is done by se-
lecting option 1 of either of the menus for p-group generation (see 7.4 or 7.6). This
description is the action of each automorphism on each of the pcp generators of the
Frattini quotient of the group. The action is described by a vector of exponents – the
length of the vector is the number of pcp generators of the group, its entries are the
powers of each of these generators which occur in the image.

Where the automorphism group is soluble, a PAG-generating system should be
supplied which works up a composition series for the group via cyclic factors of prime
order. In such cases, the calculations may be carried out completely within pq. If the
soluble group machinery is selected by the user, but a PAG-generating system is not
supplied, then the program will give wrong information.

If the automorphism group is insoluble or a PAG-generating sequence is not sup-
plied, a call is made by the program to one GAP, which computes stabilisers of particular
orbit representatives. If the automorphism group of any of the intermediate (reduced)
p-covering groups is found to be soluble, a PAG-generating sequence is computed by
GAP and handed back to pq. The soluble machinery is now automatically invoked for
the rest of the computation.

7.3 Saving group descriptions

The constructed groups of a particular class, c, are saved to a file, whose name
is obtained by concatenating: starting-group-identifier and c, where starting-group-
identifier is the group identifier defined at option 1 of the Basic Menu (see Section 6.1)
e.g. if you use the -k switch (see Section 4) when you started the anu-pq program and
settled for the default group identifier G then for class 2, the groups will be saved to
a file with name: G class2. As before, the program does not query the user before
overwriting an existing file.

7.4 The (Main) Menu for p-Group Generation

The main Menu for p-Group Generation, given below, is selected by choosing option 9

from the Basic Menu (see 6.1).

12

Menu for p-Group Generation

1. Read automorphism information for starting group

2. Extend and display automorphisms

3. Specify input file and group number

4. List group presentation

5. Construct descendants

6. Advanced p-group generation menu

7. Exit to basic menu

We now describe the options given by this menu.

1. Read automorphism information for starting group

first prompts for the following:

Input the number of automorphisms:

You must provide the number of automorphisms generating the automor-
phism group of the starting group. Then you will be prompted for the action
of each automorphism on the pcp generators of the Frattini quotient of the
group, after which you will be prompted:

Input number of soluble generators for automorphism group:

If you enter a positive integer n you will then be prompted for the relative
order of each of those n automorphisms.

2. Extend and display automorphisms

compute the extensions of these automorphisms to act on the pcp generators of
the p-covering group and display the results.

3. Specify input file and group number

prompts for the input file name and the group number.

4. List group presentation

display at output level 3 the presentation for the group.

5. Construct descendants

we discuss this option in detail in Section 7.5.

6. Advanced p-group generation menu

provides access to the “Advanced Menu” for user-controlled construction and
manipulation.

7. Exit to basic menu

returns the user to the Basic Menu (see 6.1). Selecting option 0 performs the
same function.

7.5 Construct descendants option

Here we discuss option 5 of the (main) p-group generation menu (see 7.4). If you
select this option you receive a number of questions or prompts for input. Those
prompts/questions are as follows.

13

Input class bound on descendants:

you must supply a positive integer greater than the class of the starting group,
and which is an upper bound on the class of the descendants constructed.

Construct all descendants?

If you enter a “Yes” response (by entering a non-zero integer) you are asked:

Set an order bound for descendants?

If you answer “Yes” you are further prompted (if you answer “No” (i.e. 0)
you are not so prompted):

Input order bound on descendants:

and the integer order bound you input will apply in addition to the class
bound selected.

If you responded “No” to the “Construct all descendants?” query and the
class increase is one you are prompted:

Input step size:

and a positive integer is expected.

If you responded “No” to the “Construct all descendants?” query and the
class increase is greater than one you are prompted as follows:

Constant step size?

If you answer “Yes” you are prompted:

Input step size:

and a positive integer is expected.

If you answer “No” to “Constant step size?” you are prompted:

Input n step sizes:

for some integer n, and you must enter n positive integers separated by
spaces.

PAG-generating sequence for automorphism group?

This determines the algorithm used in constructing the orbits and stabilisers of
representative allowable subgroups (see 7.7). Whether you answer “Yes” or “No”
you are then asked:

Default algorithm?

A “Yes” here constructs immediate descendants using the smallest possible char-
acteristic initial segment subgroups in the p-multiplicator. This minimises the
degree of the permutation group constructed.

If you answer “No”, then you will be prompted/asked:

Rank of the initial segment subgroup?

If you want to proceed as in the default, respond “0”; otherwise any positive
value is accepted. If the value is larger than the rank of the p-multiplicator,
the program takes this upper bound as the selected value. The initial seg-
ment subgroup determined by this response is characteristically closed by
the program.

If your answer to “PAG-generating sequence for automorphism group?”
was a “Yes”, then you will receive the following further question.

14

Space efficient computation?

By default, all of the permutations constructed are stored. If you answer
“Yes”, at any one time only one permutation is stored, consequently re-
ducing the amount of space significantly. However, the time taken in
computing the automorphism group of each descendant is also signifi-
cantly increased.

Then you will prompted/asked the following:

Completely process terminal descendants?

By default, automorphism groups are computed for and descriptions of
capable groups only are saved to file. If you wish to compute auto-
morphism groups and save descriptions of all descendants to file, then
answer “Yes”. In this case, for both terminal and capable groups, the
automorphism group is saved to file; if capable, the pcp of the p-covering
group is saved; if terminal, the pcp for the group.

Input exponent law (0 if none):

If you wish to construct only those immediate descendants which satisfy
a particular exponent law, supply that exponent; if you do not wish to
enforce an exponent law, supply 0.

Enforce metabelian law?

If you answer “Yes”, you seek to ensure that all of the immediate de-
scendants constructed have the following property – if any one of them
is used as a starting group to a later iteration, only the metabelian
immediate descendants (if any) of this group are constructed. For this
requirement to be enforceable, the starting group for this iteration must
also have that property. To ensure that the starting group has that prop-
erty, construct its p-covering group after having first set the metabelian
flag via option 14 of the Advanced p-Quotient Menu (see 6.2).

Do you want default output?

If you answer “Yes”, minimal output is displayed for each group: its identifier,
the ranks of its p-multiplicator and nucleus, the number of its immediate descen-
dants of each order, and, if there are any, the number of its capable immediate
descendants.

For many applications, the default output obtained by “Yes” is sufficient. If not,
then by answering “No” you are asked whether you want the default output for
each of the following categories: permutation group, orbits, group descriptions,
automorphism group descriptions, or if you want an algorithm trace. Answering
“No” to any of these questions (except for the last) leads to further questions, each
requiring a “Yes”/“No” answer, about what additional information you desire (or
don’t want) for the category. The following are the questions that result from a
“No” response to “Do you want default output?”:

Do you want default permutation group output?

A “No” leads to the further questions:

Print degree of permutation group?

Print extended automorphisms?

Print automorphism matrices?

Print permutations?

15

Do you want default orbit output?

A “No” leads to the further questions:

Summary of orbit information?

Complete listing of orbits?

Do you want default group output?

A “No” leads to the further questions:

Print standard matrix of allowable subgroup?

Presentation of reduced p-covering groups?

Presentation of immediate descendants?

Print nuclear rank of descendants?

Print p-multiplicator rank of descendants?

Do you want default automorphism group output?

A “No” leads to the further questions:

Print commutator matrix?

Automorphism group description of descendants?

Automorphism group order of descendants?

Do you want algorithm trace output?

This last question is designed to permit one to trace the intermediate stages
of the algorithm.

After the above dialogue, the pq binary will commence constructing descendants.
At the commencement of the application, each starting group is checked to determine
whether it meets the selected step size order, and class criteria. If it does not, a message
is displayed stating that this starting group is invalid.

7.6 Advanced Menu for p-Group Generation

Advanced Menu for p-Group Generation

1. Read automorphism information for starting group

2. Extend and display automorphisms

3. Specify input file and group number

4. List group presentation

5. Carry out intermediate stage calculation

6. Compute definition sets & find degree

7. Construct permutations of subgroups under automorphisms

8. Compute and list orbit information

9. Process all orbit representatives

10. Process individual orbit representative

11. Compute label for standard matrix of subgroup

12. Compute standard matrix for subgroup from label

13. Find image of allowable subgroup under automorphism

14. Find rank of closure of initial segment subgroup

15. List representative and orbit for supplied label

16. Write compact descriptions of generated groups to file

17. Find automorphism classes of elements of vector space

18. Exit to main p-group generation menu

16

7.7 Strategies to minimise time and space

Where a PAG-generating sequence is supplied (i.e. the question “PAG-generating
sequence for automorphism group?” is answered with a “Yes”; see 7.5), the min-
imum space requirement is achieved by supplying “0” and “Yes”, respectively, to
the questions: “Rank of the initial segment subgroup?” and “Space efficient

computation?”. This space efficiency is achieved at the cost of some additional time
in computing the stabilisers of orbit representatives. However, if you simply wish to
compute orbits, it is the best overall strategy, both from space and time considera-
tions. The “efficient space” option is currently available only where a PAG-generating
sequence is supplied.

In general, the most efficient time performance is obtained by taking the default
algorithm (answering “Yes” to “Default algorithm?; see 7.5). This also gives signif-
icant space saving over most other strategies.

As mentioned earlier, the workspace size used in computing pcps – that is, the
size of the array y – may be passed as a command line argument to the program at
invocation. Much of the storage used in the implementation of p-group generation is
separate from that allocated for y. Hence, if the program is to be used to generate
group descriptions, it is probably sensible to invoke the program with a workspace size
of no more than 100 000 rather than its default value, PQSPACE (which is defined in the
header file, constants.h). See also the discussion on this point in the README file.

8 The Standard Presentation and

Automorphism Group implementation

The Standard Presentation Menu allows a user to input a finite presentation for a
group, to construct a “standard” presentation for a specified p-quotient of the group,
and also to construct a description of the automorphism group of the p-group. To
access this menu, you need to run the anu-pq program with the -i run-time parameter
switch (see 4).

The appropriate way to view the standard presentation algorithm is the following.
The pcp constructed by supplying a finite presentation to the p-quotient algorithm
depends on the supplied presentation. The standard presentation of a p-group obtained
using the standard presentation algorithm is independent of the supplied presentation.
Hence it allows us to determine whether two p-groups are isomorphic.

In its most general form, the “standard” presentation of a p-group is obtained by
constructing a description of this group using the p-group generation algorithm.

The standard presentation of a class 1 p-quotient is identical to that obtained from
the p-quotient. A user can choose to take the presentation returned from the p-quotient
implementation to class k as an acceptable “standard” presentation up to that class
and then proceed to standardise the presentation from class k + 1 to some desired
later class. This is particularly relevant if the user is seeking to verify that two groups
are isomorphic. It may turn out that the two pcps constructed by the p-quotient
implementation are identical up to class k. Since the standardisation procedure is
significantly more expensive than a call to the p-quotient implementation, it makes
sense in such situations to begin to standardise only from class k+1 onwards. However,
the user must supply as input a description of the automorphism group of the class k

17

p-quotient – which may be more difficult to obtain for larger k.
In checking for isomorphism, it also makes sense to standardise each of the pre-

sentations, class by class. The standard presentations at the end of each class should
be compared – if they are distinct, then the groups are non-isomorphic. In order to
facilitate this, the program writes a file containing necessary details of the standard
presentation and the automorphism group of the group up to the end of the specified
class – this file can be used as input to the program later to continue the standardisa-
tion procedure. A generating set for a supplement to the inner automorphisms of the
group is stored there; each generator is described by an n× n matrix whose exponents
represent the image of each of the n pcp generators of the standard presentation.

Standard Presentation Menu

1. Supply start information

2. Compute standard presentation to supplied class

3. Save presentation to file

4. Display presentation

5. Set print level for construction

6. Compare two presentations stored in files

7. Call basic menu for p-Quotient program

8. Compute the isomorphism

9. Exit from program

We now describe each of these options.

1. Supply start information

you must supply a finite presentation for the p-group; the queries are identical to
that used in option 1 of the Basic Menu [for p-Quotient Program] (see 6.1). All of
the valid formats for supplying a presentation can be accessed, using the -b or -k
run-time switches (see Section 4). If the class supplied is c, then standardisation
(selected under option 2) begins at class c + 1 only. In general the supplied
value for the class will be one – however, see the preceding discussion. A pcp
for the class c p-quotient of the group is now computed using the the p-quotient
implementation.

2. Compute standard presentation to supplied class

If, when selecting this option, you haven’t previously selected option 1 to supply
a finite presentation, then you will be prompted:

Enter input file name for group information:

The assumption is that such a file containing the presentation and automor-
phism information for the p-group was generated from a previous run of the
Standard Presentation algorithm. If you don’t supply a valid filename the
anu-pq program bails out of option 2.

Whether or not you have previously selected option 1, you will then be prompted:

Enter output file name for group information:

The file whose name you choose can be used as input later to continue the
construction of the standard pcp. Then you will be asked:

18

Standardise presentation to what class?

The start class is one greater than the class of the p-quotient selected using
option 1 or that stored on the input file. Here you should specify the end
class for the standardisation procedure.

If you selected option 1 to supply a finite presentation, you will now be prompted
for automorphism information – in exactly the same manner as under option 1

of the main Menu for p-Group Generation (see 7.4), and then also asked whether
the supplied description is a PAG-generating sequence or not:

PAG-generating sequence for automorphism group?

3. Save presentation to file

4. Display presentation

print out the standard presentation to the current class.

5. Set print level for construction

ranges from 0 to 2. At print level 0, only timing information is printed. At print
level 1, the standard presentation at the end of each class is also printed. At
print level 2, full detail of the construction is reported. The default print level is
1.

6. Compare two presentations stored in files

supply the names of two data files containing these presentations; a check will be
run to determine if the presentations are identical. This comparison facility may
be applied to any two pcps – not just standard ones.

7. Call basic menu for p-Quotient program

provides access to the Basic Menu for p-Quotient program (see 6.1).

8. Compute the isomorphism

computes the mapping from the user-supplied generators to the generators for
the standard presentation.

9. Exit from program

causes the anu-pq program to exit. Selecting option 0 performs the same function.

Various files, all having prefixes “ISOM ”, are first created and then deleted by pq
while executing the standard presentation algorithm.

9 Warning

Pay attention to the results, and where possible confirm their correctness with other
established sources.

19

A Examples

A.1 A Basic Menu example

The following example exercises options within the Basic Menu (see 6.1). When the
anu-pq program is used without any switches (see Section 4), it opens with the Basic
Menu.

Basic Menu for p-Quotient Program

1. Compute pc presentation

2. Save presentation to file

3. Restore presentation from file

4. Display presentation of group

5. Set print level

6. Calculate next class

7. Compute p-covering group

8. Advanced p-quotient menu

9. (Main) menu for p-group generation

10. Exit from p-quotient program

Select option: 1 #we want to enter a pc presentation

Input group identifier: 2gp #something meaningful

Input prime: 2 #it’s a 2-group

Input maximum class: 6

Input print level (0-3): 1 #minimal output

Input generating set (in { }): {a, b}

Input defining set of relations (in { }): { [b, a, a], (a * b * a)^4 }

Input exponent law (0 if none): 0

Lower exponent-2 central series for 2gp

Group: 2gp to lower exponent-2 central class 1 has order 2^2

Group: 2gp to lower exponent-2 central class 2 has order 2^5

Group: 2gp to lower exponent-2 central class 3 has order 2^8

Group: 2gp to lower exponent-2 central class 4 has order 2^11

Group: 2gp to lower exponent-2 central class 5 has order 2^15

Group: 2gp to lower exponent-2 central class 6 has order 2^19

Computation of presentation took 0.02 seconds

Select option: 2 #save option

Enter output file name: 2GP #file name

Presentation written to file

20

Select option: 0 #exit

Exiting from ANU p-Quotient Program

Total user time in seconds is 0.02

This is essentially example 2gp in the examples directory (except some of our
#comments are different). If the binary for the anu-pq program is pq, then

pq < 2gp

executes the example non-interactively, with something similar to the above output
to the screen, minus the menu. Note that the menus from the anu-pq program are
only displayed when it is used interactively. A script file for the anu-pq program (like
2gp) should contain the responses that the anu-pq program will expect, in the correct
sequence.

A.2 A p-Group Generation example

The following example is essentially pga_3gp from the examples directory, except
again we have modified the comments, and we have also answered “No” to the “PAG-
generating sequence” question, so that GAP is called to compute stabilisers. If the pq
binary is unable to find GAP or finds GAP 3 instead of GAP 4 the program will die
horribly at this point. (See Section 2 if you run into problemsm, at this point.)

For this example (which generates all groups with lower exponent-3 series of shape
2-2-3-1), the anu-pq program is invoked without any of the switches of Section 4.

[..Basic Menu omitted here..]

Select option: 1 #set up group presentation

Input group identifier: c3c3

Input prime: 3

Input maximum class: 1

Input print level (0-3): 1

Input generating set (in { }): {a, b}

Input defining set of relations (in { }): {}

Input exponent law (0 if none): 0

Lower exponent-3 central series for c3c3

Group: c3c3 to lower exponent-3 central class 1 has order 3^2

Computation of presentation took 0.00 seconds

Select option: 7 #compute its 3-covering group

Group: c3c3 to lower exponent-3 central class 2 has order 3^5

Computation of 3-covering group took 0.00 seconds

Select option: 9 #enter p-group generation

Menu for p-Group Generation

1. Read automorphism information for starting group

21

2. Extend and display automorphisms

3. Specify input file and group number

4. List group presentation

5. Construct descendants

6. Advanced p-group generation menu

7. Exit to basic menu

Select option: 1 #to supply automorphisms

Input the number of automorphisms: 5

Now enter the data for automorphism 1

Input 2 exponents for image of pcp generator 1: 2 0

Input 2 exponents for image of pcp generator 2: 0 2

Now enter the data for automorphism 2

Input 2 exponents for image of pcp generator 1: 0 2

Input 2 exponents for image of pcp generator 2: 1 0

Now enter the data for automorphism 3

Input 2 exponents for image of pcp generator 1: 1 2

Input 2 exponents for image of pcp generator 2: 2 2

Now enter the data for automorphism 4

Input 2 exponents for image of pcp generator 1: 1 0

Input 2 exponents for image of pcp generator 2: 2 1

Now enter the data for automorphism 5

Input 2 exponents for image of pcp generator 1: 2 0

Input 2 exponents for image of pcp generator 2: 0 1

Input number of soluble generators for automorphism group: 0

Select option: 5 #to construct descendants

Input class bound on descendants: 4

Construct all descendants? 0 #i.e. ‘‘No’’

Constant step size? 0 #i.e. ‘‘No’’

Input 3 step sizes: 2 3 1

PAG-generating sequence for automorphism group? 0 #i.e. ‘‘No’’

Do you want default algorithm? 1 #i.e. ‘‘Yes’’

Do you want default output? 1 #i.e. ‘‘Yes’’

**

Starting group: c3c3

Order: 3^2

Nuclear rank: 3

3-multiplicator rank: 3

Now calling GAP to compute stabiliser...

true

#I Order of GL subgroup is 48

#I No. of soluble autos is 0

#I dim U = 1 dim N = 3 dim M = 3

#I nice stabilizer with perm rep

Now calling GAP to compute stabiliser...

true

22

#I Order of GL subgroup is 48

#I No. of soluble autos is 0

#I dim U = 1 dim N = 3 dim M = 3

#I nice stabilizer with perm rep

of immediate descendants of order 3^4 is 3

of capable immediate descendants is 3

**

3 capable groups saved on file c3c3_class2

**

Starting group: c3c3 #1;2

Order: 3^4

Nuclear rank: 2

3-multiplicator rank: 3

Group c3c3 #1;2 is an invalid starting group

**

Starting group: c3c3 #2;2

Order: 3^4

Nuclear rank: 3

3-multiplicator rank: 4

of immediate descendants of order 3^7 is 4

of capable immediate descendants is 4

**

Starting group: c3c3 #3;2

Order: 3^4

Nuclear rank: 2

3-multiplicator rank: 3

Group c3c3 #3;2 is an invalid starting group

**

4 capable groups saved on file c3c3_class3

**

Starting group: c3c3 #2;2 #1;3

Order: 3^7

Nuclear rank: 4

3-multiplicator rank: 5

of immediate descendants of order 3^8 is 16

of capable immediate descendants is 11

**

Starting group: c3c3 #2;2 #2;3

Order: 3^7

Nuclear rank: 3

3-multiplicator rank: 4

23

of immediate descendants of order 3^8 is 13

of capable immediate descendants is 9

**

Starting group: c3c3 #2;2 #3;3

Order: 3^7

Nuclear rank: 3

3-multiplicator rank: 4

of immediate descendants of order 3^8 is 13

of capable immediate descendants is 9

**

Starting group: c3c3 #2;2 #4;3

Order: 3^7

Nuclear rank: 3

3-multiplicator rank: 4

of immediate descendants of order 3^8 is 7

of capable immediate descendants is 5

**

34 capable groups saved on file c3c3_class4

Construction of descendants took 69.95 seconds

Select option: 0 #exit to basic menu (same as option 7)

Exiting from p-group generation

Select option: 0 #exit program (same as option 9)

Exiting from ANU p-Quotient Program

Total user time in seconds is 69.95

A.3 A Standard Presentation Menu example

The following example is similar to what is provided by the file 2gp in the isom direc-
tory, except we have added comments, we have not used the -k (keywords) runtime
switch and to reduce the output we have only computed the standard presentation
to class 3 (instead of class 10, as in the 2gp example). For this example, the anu-pq
program is invoked with the -i runtime switch (see Section 4), which gives us access
to the Standard Presentation Menu (see Section 8).

Standard Presentation Menu

1. Supply start information

2. Compute standard presentation to supplied class

3. Save presentation to file

4. Display presentation

5. Set print level for construction

6. Compare two presentations stored in files

7. Call p-Quotient menu

24

8. Compute the isomorphism

9. Exit from program

Select option: 1 #input group info.

Input group identifier: G

Input prime: 2

Input maximum class: 1

Input print level (0-3): 1 #just minimal output

Input generating set (in { }): {a, b}

Input defining set of relations (in { }): {a^4, b^4 = [b, a, a]}

Input exponent law (0 if none): 0

Lower exponent-2 central series for G

Group: G to lower exponent-2 central class 1 has order 2^2

Class 1 2-quotient and its 2-covering group computed in 0.02 seconds

Select option: 2 #for standard presentation

Enter output file name for group information: 2gp-st

Standardise presentation to what class? 3

Input the number of automorphisms: 2

Now enter the data for automorphism 1

Input 2 exponents for image of pcp generator 1: 0 1

Input 2 exponents for image of pcp generator 2: 1 1

Now enter the data for automorphism 2

Input 2 exponents for image of pcp generator 1: 0 1

Input 2 exponents for image of pcp generator 2: 1 0

PAG-generating sequence for automorphism group? 1 #i.e. ‘‘Yes’’

Starting group has order 2^2; its automorphism group order is 6

The standard presentation for the class 2 2-quotient is

Group: G #1;3 to lower exponent-2 central class 2 has order 2^5

Non-trivial powers:

.1^2 = .4

.2^2 = .5

Non-trivial commutators:

[.2, .1] = .3

Its automorphism group has order 384

Computing standard presentation for class 2 took 0.08 seconds

The standard presentation for the class 3 2-quotient is

Group: G #1;3 to lower exponent-2 central class 3 has order 2^8

Non-trivial powers:

25

.1^2 = .4

.2^2 = .5

.3^2 = .6 .8

.5^2 = .6

Non-trivial commutators:

[.2, .1] = .3

[.3, .1] = .6

[.3, .2] = .7

[.4, .2] = .8

[.5, .1] = .6 .7 .8

Its automorphism group has order 4096

Computing standard presentation for class 3 took 0.12 seconds

Select option: 0 #exit (option 9 does this also)

A.4 A keywords example

To use keywords you must use the -k runtime switch (see Section 4). For this example
we are again using the Standard Presentation Menu; so we also use the -i runtime
switch. The example is 2gp.com from the isom directory. If the binary for the anu-pq
program is pq, then

pq -i -k < 2gp.com

in the isom directory yields something like the following output. (The keywords are
used in option 1; note the “;” indicating all remaining data for that option should take
default values.)

[..Standard Presentation Menu omitted here..]

Select option: 1 #set up start information

prime 2 #keyword ‘prime’

class 2 #keyword ‘class’

generators {a, b} #keyword ‘generators’

relations {a^4, b^2 = [b, a, b]}; #keyword ‘relations’ (NB: closing ‘;’)

Lower exponent-2 central series for G

Group: G to lower exponent-2 central class 1 has order 2^2

Group: G to lower exponent-2 central class 2 has order 2^4

Class 2 2-quotient and its 2-covering group computed in 0.00 seconds

Select option: 2 #standardise presentation

Enter output file name for group information: Standard

Standardise presentation to what class? 10

Input the number of automorphisms: 3

Now enter the data for automorphism 1

26

Input 4 exponents for image of pcp generator 1: 1 0 0 1

Input 4 exponents for image of pcp generator 2: 0 1 0 0

Now enter the data for automorphism 2

Input 4 exponents for image of pcp generator 1: 1 0 0 0

Input 4 exponents for image of pcp generator 2: 0 1 0 1

Now enter the data for automorphism 3

Input 4 exponents for image of pcp generator 1: 1 1 1 0

Input 4 exponents for image of pcp generator 2: 0 1 1 1

PAG-generating sequence for automorphism group? 1

Starting group has order 2^4; its automorphism group order is at most 96

The standard presentation for the class 3 2-quotient is

Group: G #1;2 to lower exponent-2 central class 3 has order 2^6

Non-trivial powers:

.1^2 = .4

.2^2 = .5

.3^2 = .6

Non-trivial commutators:

[.2, .1] = .3

[.3, .1] = .5

[.3, .2] = .6

[.4, .2] = .5 .6

Its automorphism group has order at most 384

Computing standard presentation for class 3 took 0.05 seconds

The standard presentation for the class 4 2-quotient is

Group: G #1;1 to lower exponent-2 central class 4 has order 2^7

[..265 lines omitted here..]

The standard presentation for the class 10 2-quotient is

Group: G #1;4 to lower exponent-2 central class 10 has order 2^24

[..93 lines omitted here..]

Its automorphism group has order at most 25769803776

Computing standard presentation for class 10 took 0.27 seconds

Select option: 4 #display standard presentation for class 10 2-quotient

Group: G #1;4 to lower exponent-2 central class 10 has order 2^24

Non-trivial powers:

.1^2 = .4

.2^2 = .5 .11 .13 .17 .24

27

.3^2 = .6 .7 .10 .11 .12 .13 .14 .17 .20 .21 .22

.5^2 = .8 .11 .19 .20 .21

.6^2 = .10 .14 .16 .18 .22 .23 .24

.7^2 = .10 .12 .21 .22 .24

.8^2 = .12 .15

.9^2 = .12 .17 .20 .22 .23

.10^2 = .15 .18

.11^2 = .15 .20 .24

.12^2 = .18 .21

.13^2 = .18 .24

.14^2 = .18 .23

.15^2 = .21

.17^2 = .21

Non-trivial commutators:

[.2, .1] = .3

[.3, .1] = .5

[.3, .2] = .6

[..71 lines omitted here..]

[.20, .2] = .23

Select option: 0 #exit

Exiting from ANU p-Quotient Program

Total user time in seconds is 1.13

A.5 A basic format Advanced p-Group Generation example

With the following example we demonstrate both the use of the -b runtime switch (see
Section 4) and we exercise an Advanced menu. To do something equivalent to what
we give below, (assuming the pq binary is pq) do:

pq -b < pga_interactive

in the examples directory.

[..Basic Menu omitted here..]

Select option: 1 #set up group presentation

Input group identifier: Nott #our group will be the Nottingham group

Input prime: 5

Input maximum class: 3

Input print level (0-3): 1 #minimal output

Input number of generators: 2 #this is the prompt we get with -b

Input number of relations: 3 #(ditto)

Input exponent law (0 if none): 0

5 1; #this is the ‘‘basic format’’ (-b switch)

The input word is 5 1

Input right-hand side of relation:

0;

The input word is 0

28

Input left-hand side of relation:

5 2;

The input word is 5 2

Input right-hand side of relation:

0;

The input word is 0

Input left-hand side of relation:

1 [2 1 2];

The input word is 1 [2 1 2]

Input right-hand side of relation:

0; #the final ‘‘basic format’’ input needed

The input word is 0

Lower exponent-5 central series for Nott

Group: Nott to lower exponent-5 central class 1 has order 5^2

Group: Nott to lower exponent-5 central class 2 has order 5^3

Group: Nott to lower exponent-5 central class 3 has order 5^4

Computation of presentation took 0.00 seconds

Select option: 7 #compute 5-covering group

Group: Nott to lower exponent-5 central class 4 has order 5^8

Computation of 5-covering group took 0.00 seconds

Select option: 2 #save presentation

Enter output file name: Nott

Presentation written to file

Select option: 9 #to (Main) p-Group Generation Menu

Menu for p-Group Generation

1. Read automorphism information for starting group

2. Extend and display automorphisms

3. Specify input file and group number

4. List group presentation

5. Construct descendants

6. Advanced p-group generation menu

7. Exit to basic menu

Select option: 1 #define aut. group

Input the number of automorphisms: 6

Now enter the data for automorphism 1

Input 4 exponents for image of pcp generator 1: 1 0 0 0

Input 4 exponents for image of pcp generator 2: 0 1 0 1

29

Now enter the data for automorphism 2

Input 4 exponents for image of pcp generator 1: 1 1 0 0

Input 4 exponents for image of pcp generator 2: 0 1 0 0

Now enter the data for automorphism 3

Input 4 exponents for image of pcp generator 1: 1 0 0 0

Input 4 exponents for image of pcp generator 2: 0 4 0 0

Now enter the data for automorphism 4

Input 4 exponents for image of pcp generator 1: 1 0 0 0

Input 4 exponents for image of pcp generator 2: 0 2 0 0

Now enter the data for automorphism 5

Input 4 exponents for image of pcp generator 1: 4 0 0 0

Input 4 exponents for image of pcp generator 2: 0 1 0 0

Now enter the data for automorphism 6

Input 4 exponents for image of pcp generator 1: 2 0 0 0

Input 4 exponents for image of pcp generator 2: 0 1 0 0

Input number of soluble generators for automorphism group: 0

Select option: 5 #construct descendants

Input class bound on descendants: 4

Construct all descendants? 0 #i.e. ‘‘No’’

Input step size: 1

PAG-generating sequence for automorphism group? 1 #‘‘Yes’’

Do you want default algorithm? 0 #‘‘No’’

Rank of the initial segment subgroup? 4

Space efficient computation? 0 #‘‘No’’

Completely process terminal descendants? 0 #‘‘No’’

Input exponent law (0 if none): 0

Enforce metabelian law? 0 #‘‘No’’

Do you want default output? 1 #‘‘Yes’’

**

Starting group: Nott

Order: 5^4

Nuclear rank: 1

5-multiplicator rank: 4

of immediate descendants of order 5^5 is 9

of capable immediate descendants is 2

**

2 capable groups saved on file Nott_class4

Construction of descendants took 0.02 seconds

Select option: 3 #restore group

Enter input file name: Nott_class4

Which group? 1

Select option: 6 #get Advanced p-Group Gen’n Menu

30

Advanced Menu for p-Group Generation

1. Read automorphism information for starting group

2. Extend and display automorphisms

3. Specify input file and group number

4. List group presentation

5. Carry out intermediate stage calculation

6. Compute definition sets & find degree

7. Construct permutations of subgroups under automorphisms

8. Compute and list orbit information

9. Process all orbit representatives

10. Process individual orbit representative

11. Compute label for standard matrix of subgroup

12. Compute standard matrix for subgroup from label

13. Find image of allowable subgroup under automorphism

14. Find rank of closure of initial segment subgroup

15. List representative and orbit for supplied label

16. Write compact descriptions of generated groups to file

17. Find automorphism classes of elements of vector space

18. Exit to main p-group generation menu

Select option: 6 #find degree

Input step size: 2

Rank of the initial segment subgroup? 3

Input exponent law (0 if none): 0

Degree of permutation group is 25

Select option: 7 #compute permutations

PAG-generating sequence for automorphism group? 1

Space efficient computation? 0

Print automorphism matrices? 0

Print permutations? 0

Time to compute permutations is 0.00 seconds

Select option: 8 #compute orbits

PAG-generating sequence for automorphism group? 1 #‘‘Yes’’

Space efficient computation? 0 #‘‘No’’

Summary of orbit information? 1 #‘‘Yes’’

Complete listing of orbits? 0 #‘‘No’’

Time to compute orbits is 0.00 seconds

Orbit Length Representative

1 5 1

2 20 2

Select option: 9 #compute stabilisers

PAG-generating sequence for automorphism group? 1 #‘‘Yes’’

31

Space efficient computation? 0 #‘‘No’’

Completely process terminal descendants? 0 #‘‘No’’

Input exponent law (0 if none): 0

Enforce metabelian law? 0 #‘‘No’’

Print standard matrix of allowable subgroup? 0 #‘‘No’’

Presentation of reduced p-covering groups? 0 #‘‘No’’

Presentation of immediate descendants? 0 #‘‘No’’

Print nuclear rank of descendants? 0 #‘‘No’’

Print p-multiplicator rank of descendants? 0 #‘‘No’’

Print commutator matrix? 0 #‘‘No’’

Automorphism group description of descendants? 0 #‘‘No’’

Automorphism group order of descendants? 0 #‘‘No’’

Enter output file name: X

Time to process representative is 0.02 seconds

Select option: 3 #restore reduced p-covering group

Enter input file name: X

Which group? 1

Select option: 4 #display presentation

Group: Nott #1;1 to lower exponent-5 central class 5 has order 5^9

Class 1

1 is defined on image of defining generator 1

2 is defined on image of defining generator 2

Class 2

3 is defined on [2, 1] = 2 1

Class 3

4 is defined on [3, 1] = 2 1 1

Class 4

5 is defined on [4, 1] = 2 1 1 1

Class 5

6 is defined on [5, 1] = 2 1 1 1 1

7 is defined on [5, 2] = 2 1 1 1 2

8 is defined on 1^5 = 1 1

9 is defined on 2^5 = 2 2

Non-trivial powers:

.1^5 = .8

.2^5 = .9

Non-trivial commutators:

[.2, .1] = .3

[.3, .1] = .4

[.4, .1] = .5

[.4, .2] = .7

[.4, .3] = .7^4

[.5, .1] = .6

32

[.5, .2] = .7

Select option: 5 #intermediate stage computation

Input step size: 2

PAG-generating sequence for automorphism group? 1 #‘‘Yes’’

Do you want default algorithm? 1 #‘‘Yes’’

Do you want default output? 1 #‘‘Yes’’

Input output file name: XX

**

Starting group: Nott #1;1

Order: 5^5

Nuclear rank: 2

5-multiplicator rank: 4

of immediate descendants of order 5^7 is 40

of capable immediate descendants is 5

Time for intermediate stage is 0.07 seconds

Select option: 0 #exit through 3 levels of menus

Exiting from advanced p-group generation menu

Select option: 0

Exiting from p-group generation

Select option: 0

Exiting from ANU p-Quotient Program

Total user time in seconds is 0.10

B Changes

Version 1.9

Fixes made to warnings in C code by Max Horn.

Version 1.8

GAP link code updated for GAP 4.4.

Version 1.7

Binomial coefficient algorithm modified to avoid overflow.

Version 1.6

In main Menu for p-Group Generation, when asking for automorphisms, now ask
for the number of soluble automorphisms and their relative orders when there
are any.

Version 1.5

Added the -G option for use with GAP and the -v option.

33

References

George Havas and M.F. Newman (1980), “Application of computers to questions like
those of Burnside”, Burnside Groups (Bielefeld, 1977), Lecture Notes in Math.
806, pp. 211-230. Springer-Verlag, Berlin, Heidelberg, New York.

M.F. Newman (1977), “Determination of groups of prime-power order”, Group Theory
(Canberra, 1975). Lecture Notes in Math. 573, pp. 73–84. Springer-Verlag.

M.F. Newman and E.A. O’Brien (1996), “Application of computers to questions like
those of Burnside, II”, Internat. J. Algebra Comput. 6, 593-605.

E.A. O’Brien (1990), “The p-group generation algorithm”, J. Symbolic Comput. 9,
677-698.

E.A. O’Brien (1994), “Isomorphism testing for p-groups”, J. Symbolic Comput. 17,
133–147.

E.A. O’Brien (1995), “Computing automorphism groups for p-groups”, Computa-
tional Algebra and Number Theory (Sydney, 1992), pp. 83–90. Kluwer Academic
Publishers, Dordrecht.

M.R. Vaughan-Lee (1982), “An Aspect of the Nilpotent Quotient Algorithm”, Com-
putational Group Theory (Durham, 1982), pp. 76–83. Academic Press.

Michael Vaughan-Lee (1990a), “The Restricted Burnside Problem”, London Mathe-
matical Society monographs (New Ser.) 5. Clarendon Press, New York, Oxford.

M.R. Vaughan-Lee (1990b), “Collection from the left”, J. Symbolic Comput. 9, 725–
733.

Eamonn A. O’Brien
Department of Mathematics
University of Auckland
Private Bag 92019, Auckland, New Zealand

E-mail address: obrien@math.auckland.ac.nz

Last revised by Eamonn O’Brien: August 2001
Revised February 2002 (v1.5 GG), February 2004 (v1.6 GG),

November 2011 (v1.9 MH), January 2012 (v1.9 GG)

34

